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Abstract
 The results of numerical simulations showing hysteresis in the Random Bond Ising model at T
= 0 and in two dimensions resulting from interactions with its Moore neighbourhood are presented
for the first time. The phenomena of Return Point Memory is also examined. The results
presented are the initial simulations and stochastic effects are not taken into account.
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1  Introduction

The Lenz-Ising Model (IM) [1] is the simplest
model for study of characteristics arising only from
spin. Extension of the IM using random fields [2,3]
and random bonds [4, 5] has been used to show
hysteresis in the model. However, in these models
the interaction were limited to the nearest Von-
Neumann neighbours only. Here the results of
numerical simulations show that hysteresis in the
Random Bond Ising Model (RBIM) is also present
in the case of interactions due to the Moore
neighbourhood too. The phenomena - return
hysteresis loop [6] which is also known as return
point memory (RPM) is also examined in these
simulations.

2  RBIM with Moore Neighbourhood (MN)

The RBIM is an array of lattice sites with each
site exhibiting either spin up or down        . In
between each site to its neighbouring site the
interaction is communicated through a Gaussian
distribution of random bonds with strength limited
up to ±1 only. As is usually done, the edge lattice
points are reconnected to the "opposite" sides of
the same lattice to avoid edge effects of a finite
lattice size.

With the Moore neighbourhood in 2 dimensions
each lattice site has 8 nearest neighbours. For the
site labelled as (i,j), it will be connected to the sites
(i-1,j-1),(i-1,j),(i-1,j+1),(i,j-1),

  )1( , ±=jiσ

(i,j+1),(i+1,j-1),(i+1,j),(i+1,j+1) as shown in the
figure (1).

 

Figure 1: Moore Neighbourhood of (i, j) in  
2 dimensions with the random bonds. 

For a lattice sized i,j=1,2…n, the edge effects
are taken care by
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Figure (2) is a pictorial representation for lattice
site (1,n) with its Moore Neighbours.

 

Figure 1: Moore Neighbourhood of (1,n). 

Each lattice site (i,j) would be connected to each
of its eight nearest neighbours via eight bonds of
random strength between [-1,1] and their strength
distribution is Gaussian. The bonds to its top, top-
right, right, right-bottom, bottom, bottom-left, left,
left-top are labelled as

respectively. These are illustrated in figure (1).

3  Dynamics of RBIM

In this model of the RBIM with MN, we assume
that the spin-state of the (i,j)-th lattice site is
decided by the sum of the interactions of its 1st
degree Moore Neighbourhood. This is computed
as,

In the above, the summation          is over the
Moore neighbourhood of the lattice site.
The        in the superscript of       is to used to
indicate the operation direction of the bond and
would contain one of the identifiers T, TR, R, RB,
B, BL, L or LT as the case may be.

In the presence of an uniform external field H,
acting over the lattice, the spin-state of (i,j)-th site
would now be dictated by,

�

<k>  b
<k>
<i,j>

The simulations are carried out in the following
manner -
1. The individual spins of each lattice site is

generated. They take random values of either
-1 or +1. Consequently the magnetization,
which is the sum total of their spins over the
entire lattice is M� 0.

2. Next the random bonds b<k>
<i,j> , as given by (1)

which operate in between the nearest
neighbours are enerated. Their values are
restricted to [-1,+1] and have a Gaussian
distribution to mimic natural phenomena.

3. The OA segment of the M-H curve in figure
(3) is obtained by gradually increasing the
external field H from 0 to a value of 6. For
each value of H, each site of the lattice takes
its spin depending on the dynamics (3). The
process is repeated until the spin states in each
of the lattice sites remain unchanged and
equilibrium is achieved for this particular value
of H. The value of M is calculated.

4. The process is repeated with the new
incremented value of H and continued until M
attains its maximum value of unity.

5. In a similar manner, the curves ABCD and
DEFA are obtained by decrementing and
incrementing H from points A and from D
respectively.



 

Figure 1: Hysteresis with RPM for n2 = 500×500. 
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Return Point Memory (RPM)

As shown in (3) we can pause the decrement of H
in the curve ABCD at any point P and start to
increment H up to any value leading to point R via
Q and again decrement H back to its original value
at P. The curve RSP although different from PQR
moves back to its initial point P. Further decrement
of H makes the curve continue to D in the same
manner as it would have done without the deviation
at point P. The fact that M gets the same value at P
for both PQR and RSP is called as the return point
memory characteristic to the system.

4  Simulation Results

The simulation results for the curves OA, ABCD,
DEFA for lattice size of 500×500 is reproduced in
figure (3) and they clearly show the presence of
hysteresis in the RBIM with MN. If the data set
(H,M) from the numerical simulation for the curve
DEFA set to the transformation 8 we get the curve
ABCD. Thus the hysteresis curves are symmetric
under such parity inversion.
 

The results for the RPM study are taken by
considering P to be at H=-0.6 and R at H=1. The

table (1) shows the difference of magnetization at
P when arriving at it from A via B, and arriving at P
via the loop PQRS for lattice sizes n=100,200,500.
|ÄM|  is the absolute difference of the
magnetization. Its non-zero value signifies that the
lattice is not identical at P before and after the loop
PQRSP. By taking the ratio of |ÄM| with respect
to the number of lattice sites n

2
, we see that this

relative difference becomes smaller as the lattice
size increases. We can conclude that the RPM
property is present in RBIM with the Moore
Neighbourhood too and would become more exact
for larger lattice sizes.

5  Conclusion

The simulation results presented here would help
in giving guidelines to any theoretical explanations
of such phenomena. Hysteresis is one of the
simplest phenomena where the effects a changing
environment, the external field, in a regular manner
brings about a change to the system. And here it is
demonstrated with one of the simplest of spin-
systems, the RBIM with MN in two dimensions.
We can conclude two features of the RBIM with
MN; firstly the symmetry of the M-H curves during
the complete reversal of magnetization and the
presence of RPM. It is expected that any theory
explaining hysteresis in this model should take into
account these properties.

Table 1: Difference in the magnetization
during the starting and ending of the RPM
loop PQRSP at point P (at H = -0.6).
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