Probing the Magnetic Transitions in Europium Chromite through Electron Paramagnetic Resonance

Oimang Borang¹, S.Srinath², S. N. Kaul², and Y. Sundarayya² *

1 Department of Physics, School of Sciences, Nagaland University, Lumami - 798627, Nagaland, India.

2 School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad - 500 046, A.P, India.

Received: 27 October 2017

Abstract

We report the synthesis of homogeneous single phase EuCrO₃ nanoparticles by a modified sol-gel followed by hydrothermal methods. Annealing the as-synthesized amorphous powder at 973 K and ambient pressure reveals EuCrO₃ crystallizes into orthorhombic perovskite structure with space group *Pbnm* and D_{4h}^{19} symmetry. DC magnetic measurements suggest that the Cr³⁺ spins undergo a paramagnetic – antiferromagnetic transition with canting of spins at Cr sublattices with Néel temperature, $T_N = 181 K$, as a consequence of antisymmetric Dzyaloshinsky-Moriya (DM) Cr–O–Cr super exchange interaction. Analysis of temperature-dependent electron paramagnetic resonance spectra reveals that the line-width (ΔH_{pp}), the differential intensity (ΔI_{pp}), the spontaneous magnetization ($4\pi M_{s}$) and the magnetic anisotropy field (H_{t}) show an abrupt transition at Néel temperature.

Key words: Sol-gel processing, Nanocrystalline materials, Antiferromagnetics. PACS: 81.20.Fw, 73.63.Bd, 75.50.Ee